SIMULATION STUDY ON THE TUBULAR MICROREACTOR FOR HYDROGEN PRODUCTION BY STEAM REFORMING OF METHANOL

Author:

YUAN ZHANPENG1,CHEN XUEYE2ORCID

Affiliation:

1. Faculty of Mechanical Engineering and Automation, Liaoning University of Technology, Jinzhou, Liaoning 121001, P. R. China

2. College of Transportation, Ludong University, Yantai, Shandong 264025, P. R. China

Abstract

In order to reduce the carbon emissions of fuel vehicles, hydrogen has received extensive attention as a new clean energy. In this paper, a packed-bed microreactor for hydrogen production from methanol steam is designed for use in hydrogen fuel cells. By considering the heating gas velocity in the heating tubes, the inlet temperature of the microreactor, the size and number of heating tubes, inlet pressure, pellet porosity and thermal conductivity, parameters such as methanol conversion rates and hydrogen concentration were evaluated. First, the rate at which the gas is heated has a great influence on the reaction results. Choosing a larger heating gas velocity leads to an increase in the temperature inside the microreactor, thereby increasing the CH3OH conversion, resulting in a higher H2 concentration at the outlet. Changing the inlet temperature of the microreactor affects the reaction speed, but has little effect on the H2 concentration at the outlet. By studying the radius and number of heating tubes, we selected three different sets of data to compare the conversion rate of reactants and the concentration of products, and finally determined the optimal parameters as R = 4 mm and N = 8. Second, the inlet pressure has little effect on the H2 concentration at the outlet, but has a significant effect on the reaction speed. Particle porosity has no effect on the reaction results. Finally, the larger the thermal conductivity, the higher the temperature in the microreactor, which is more conducive to the reaction.

Funder

Young Taishan Scholars Program of Shandong Province of China

Shandong Provincial Natural Science Foundation

Publisher

World Scientific Pub Co Pte Ltd

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3