CHARACTERIZATION OF PERIODIC CYLINDRICAL SUBSURFACE DEFECTS BY PULSED FLASH THERMOGRAPHY

Author:

DIKIĆ GORAN1,TOMIĆ LJUBIŠA2,DAMNJANOVIĆ VESNA3,MILANOVIĆ BOJAN1

Affiliation:

1. Military Academy, University of Defence, Pavla Jurišića Šturma 33, Belgrade 11000, Serbia

2. Technical Test Center, Serbian Armed Forces, Vojvode Stepe 445, Belgrade 11000, Serbia

3. Faculty of Mining and Geology, University of Belgrade, Djušina 7, Belgrade 11000, Serbia

Abstract

A characterization of cylindrical periodic subsurface defects of different sizes by means of pulsed thermography is presented in the paper. To ensure a uniform thermal flux distribution, the test samples were heated in lab conditions using two photographic flashes. Surface temperature was intentionally recorded at an angle to the normal of the sample surface. Recorded temperatures were compared with simulated temperatures and the differences in temperature peak values and temperature peak positions were noted. The thermal image was transformed based on known positions of four noncollinear points, in order to cancel out errors resulting from image recording at an angle. The uniformity of surface heating and the effect of the positions of the defects on the results were tested by means of a simulation model. The positions did not affect defect characterization. It was also found that in spite of nonuniform heating, if the reference points were selected properly, the difference in temperature contrast was negligible.

Publisher

World Scientific Pub Co Pte Lt

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3