A TAGUCHI-TOPSIS HYBRID TECHNIQUE TO ENHANCE THE FRETTING WEAR CHARACTERISTICS FOR SiC AND SILICA-ENRICHED BLA-REINFORCED AZ91D Mg ALLOY-BASED MMCs

Author:

NAYAK BISWAJEET1,SINGH THINGUJAM JACKSON1

Affiliation:

1. Department of Mechanical Engineering, National Institute of Technology, Nagaland 797103, India

Abstract

This investigation intends to come up with a cost-efficient and easily available bamboo leaf ash (BLA) which has high content of Silica, as an effective and complimenting reinforcement for the production of magnesium alloy-based metal matrix composites. By incorporating SiC and BLA reinforcement to AZ91D Mg alloy, the composites were made using the bottom pouring stir casting technique. The ratio between SiC and BLA in the composite, respectively, varied as 0:0, 6:0, 0:6, 4:2, 3:3, 2:4 wt.%. Fretting wear is one of the fundamental modes of wear for any mating parts which have vibration with low amplitude. In this study, an integrated Taguchi-TOPSIS is adapted to make the process variables more optimal for fretting wear of composites. Material composition, load, temperature, time, frequency and stroke length are selected as process parameters. The objective is to minimize the coefficient of friction, volume loss and surface roughness. Using the TOPSIS approach, the multi-criteria optimization approach was reduced to a single-criteria issue. The results revealed AZ91D/2 wt.% SiC/4 wt.% BLA, 10N, room temperature, 30-min, 30 Hz and 0.7 mm stroke as optimal parameters. Microscopic study demonstrates that fretting wear occurs in the partial slip zone for the composite tested at optimal condition. With temperature, the wear regime in composites shifts from partial slip to mixed fretting, whereas in alloys, the wear regime shifts from mixed fretting to gross slip. When the correct set of circumstances are available, hybrid composite can function well as a replacement for traditional materials in machineries vulnerable to fretting wear.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3