FINITE ELEMENT ANALYSIS OF EQUIVALENT STRESS INDUCED BY SURFACE PUNCHING SEVERE DEFORMATION AIMED AT ALLOYING ON LOW-CARBON STEEL

Author:

MAO XIANGYANG12,SUN JIANYU1,WANG HONGXING1,ZHAO XIUMING1,WANG ZHANGZHONG12

Affiliation:

1. School of Materials Science and Engineering, Nanjing Institute of Technology, No.1 Hongjing Road, Nanjing 211167, P. R. China

2. Jiangsu Key Laboratory of Advanced Structural, Materials and Application Technology, No.1 Hongjing Road, Nanjing 211167, P. R. China

Abstract

The punching severe deformation is a recently developed surface treatment that forms alloying by inducing a greater compressive equivalent stress field. Despite its proven utility, there has been little attention devoted to the accurate modeling of this process. In this work, a 3D-DEFORM finite element analysis was used to model the equivalent stress distribution induced by the punching process on a low-carbon steel surface. A majority of the controlling parameters of the process were taken into account. The effect of punching number, punching tip size, punching velocity and punching pressure on the equivalent stress distribution was evaluated. The results show that an equivalent stress distribution much higher than the conventional surface severe deformation can be obtained by optimizing the punching severe deformation process. The reported simulation results can successfully predict the punching severe deformation used to create an alloying layer on the surface of low-carbon steel.

Funder

Jiangsu Outstanding Youth Foundation

Qing Lan Project

Six Talent Peaks Project in Jiangsu Province

Publisher

World Scientific Pub Co Pte Lt

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3