SURFACE CHARACTERISTICS INFLUENCED BY LASER TEXTURING PARAMETERS ON BIOMEDICAL-GRADE AISI 316LVM STAINLESS STEEL

Author:

KASMAN ŞEFIKA1ORCID,UÇAR I. CAN1ORCID,OZAN SERTAN2ORCID

Affiliation:

1. Department of Mechanical Engineering, Dokuz Eylul University, Izmir 35390, Turkey

2. Department of Mechanical Engineering, Yozgat Bozok University, Yozgat 66100, Turkey

Abstract

Surface roughness and wettability, which characterize the texture formed on the implant surface, are critical features for the functionality of the implant. Laser texturing is a promising processing method because of the advantages it provides in creating a particular surface topography on the surface of a metallic implant material with a nanosecond pulsed laser beam. Different experimental combinations were created using a fiber pulsed marking device on the surface of AISI 316LVM implant material using the hatch strategy; textures depending on the scan speed, frequency, and hatch distance were created on the surface. The surface roughness and wettability evaluated the effects of parameters on the texture form. Based on the experimental and statistical results, while the scan speed was the most significant parameter affecting the wettability behavior and surface roughness, the hatch strategy and frequency also affected the surface roughness to some extent. Many textured surfaces showed super-hydrophilic behavior with a contact angle of 0[Formula: see text]. It has been determined that surface textures with the same or close roughness values did not exhibit the same wettability behavior. The lowest surface roughness of 2 [Formula: see text]m with a 132[Formula: see text] contact angle was obtained at a hatch strategy of 0[Formula: see text]/90[Formula: see text], a scan speed of 900 mm/s, a frequency of 100 kHz, and a hatch distance of 0.03 mm. Three-dimensional surface images show that while many craters formed the surface textures, overlapping consecutive beams and hatch strategies significantly affected the surface topography.

Funder

Dokuz Eylul University

Publisher

World Scientific Pub Co Pte Ltd

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3