O–Cu(001): I. BINDING THE SIGNATURES OF LEED, STM AND PES IN A BOND-FORMING WAY

Author:

SUN CHANG Q.1

Affiliation:

1. School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore

Abstract

This work consists of two sequential parts, which review the advances in uncovering the capacity of VLEED, STM and PES in revealing the nature and kinetics of oxidation bonding and its consequences for the behavior of atoms and valence electrons at a surface; and in quantifying the O–Cu(001) bonding kinetics. The first part describes the model in terms of bond making and its effect on the valence DOS and on the surface potential barrier (SPB) for surfaces with chemisorbed oxygen. One can replace the hydrogen in a H 2 O molecule with an arbitrary less electronegative element and extend the M 2 O to a solid surface with Goldschmidt contraction of the bond length, which formulates a specific oxidation surface with identification of atomic valences and their correpondence to the STM and PES signatures. As consequences of bond making, oxygen derives foou additional DOS features in the valence band and above, i.e. O–M bonding (~ -5 eV), oxygen nonbounding lone pairs (~ - 2 eV), holes (≤ EF ), and antibonding metal dipoles (≥ EF ), in addition to the hydrogen-bond-like formation. The evolution of O -1 to O -2 transforms the CuO 2 pairing off-centered pyramid in the c(2× 2)-2 O -1 into the CU 3 O 2 pairing tetrahedron in the [Formula: see text] phase on the Cu(001) surface. The new decoding technique has enabled the model to be justified and hence the capacity of VLEED, PES and STM to be fully uncovered in determining simultaneously the bond geometry, the SPB, the valence DOS, and their interdependence.

Publisher

World Scientific Pub Co Pte Lt

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hybridized Bonding;Electron and Phonon Spectrometrics;2020

2. Theory: Bond-Electron-Energy Correlation;Electron and Phonon Spectrometrics;2020

3. VLEED Capability and Sensitivity;Electron and Phonon Spectrometrics;2020

4. Methodology: Parameterization;Electron and Phonon Spectrometrics;2020

5. Principles: Bond-Band-Barrier Correlation;Electron and Phonon Spectrometrics;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3