Label-Efficient Point Cloud Semantic Segmentation: A Holistic Active Learning Approach

Author:

Shi Xian1,Cai Lile2,Chen Ke3ORCID,Foo Chuan Sheng24ORCID,Jia Kui5,Xu Xun2ORCID

Affiliation:

1. South China University of Technology, Guangzhou, P. R. China

2. Institute for Infocomm Research, A*STAR, Singapore

3. Pengcheng Laboratory, Shenzhen, P. R. China

4. Centre for Frontier AI Research, A*STAR, Singapore

5. The Chinese University of Hong Kong, Shenzhen

Abstract

Deep learning models are the state of the art for semantic segmentation of point clouds, the success of which relies on the availability of large-scale annotated datasets. However, it can be prohibitively costly to prepare such datasets. In this work, we propose a holistic active learning (AL) approach to maximize model performance given limited annotation budgets. We investigate the appropriate sample granularity for active selection under the realistic “click” measurement of annotation cost, and demonstrate that superpoint-based selection allows for most efficient usage of the limited budget, when compared with point-level, polygon-level and instance/shape-level selection. We further propose new objective for AL acquisition function and exploit local consistency constraints to boost the performance of our superpoint-based approach. We evaluate our methods on three benchmark datasets, ShapeNet and PartNet and S3DIS. The results demonstrate that AL is an effective strategy to address the high annotation costs in semantic point cloud segmentation.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3