MULTISCALE MODELING OF MULTIPHASE FLOW WITH COMPLEX INTERACTIONS

Author:

LUO K. H.1,XIA J.1,MONACO E.1

Affiliation:

1. Energy Technology Research Group, School of Engineering Sciences, University of Southampton, Southampton SO17 1BJ, UK

Abstract

This paper presents a variety of modeling and simulation methods for complex multiphase flow at microscopic, mesoscopic and macroscopic scales. Each method is discussed in terms of its scale-resolving capability and its relationship with other approaches. Examples of application are provided using a liquid–gas system, in which complex multiscale interactions exist among flow, turbulence, combustion and droplet dynamics. Large eddy simulation (LES) is employed to study the effects of a very large number of droplets on turbulent combustion in two configurations in a fixed laboratory frame. Direct numerical simulation (DNS) in a moving frame is then deployed to reveal detailed dynamic interactions between droplets and reaction zones. In both the LES and the DNS, evaporating droplets are modeled in a Lagrangian macroscopic approach, and have two-way couplings with the carrier gas phase. Finally, droplet collisions are studied using a multiple-relaxation-time lattice Boltzmann method (LBM). The LBM treats multiphase flow with real-fluid equations of state, which are stable and can cope with high density ratios. Examples of successful simulations of droplet coalescence and off-center separation are given. The paper ends with a summary of results and a discussion on hybrid multiscale approaches.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3