Affiliation:
1. Raman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bangalore 560080, India
Abstract
In the currently accepted model for cosmic baryon evolution, Cosmic Dawn (CD) and the Epoch of Reionization (EoR) are significant times when first light from the first luminous objects emerged, transformed and subsequently ionized the primordial gas. The 21[Formula: see text]cm (1420[Formula: see text]MHz) hyperfine transition of neutral hydrogen, redshifted from these cosmic times to a frequency range of 40[Formula: see text]MHz to 200[Formula: see text]MHz, has been recognized as an important probe of the physics of CD/EoR. The global 21[Formula: see text]cm signal is predicted to be a spectral distortion of a few 10’s to a few 100’s of mK, which is expected to be present in the cosmic radio background as a trace additive component. Shaped Antenna measurement of the background RAdio Spectrum (SARAS) is a spectral radiometer purpose designed to detect the weak 21[Formula: see text]cm signal from CD/EoR. An important subsystem of the radiometer, the digital correlation spectrometer, is developed around a high-speed digital signal processing platform called pSPEC. pSPEC is built around two quad 10-bit analog-to-digital converters (EV10AQ190) and a Virtex 6 (XC6VLX240T) field programmable gate array, with provision for multiple Gigabit Ethernet and 4.5[Formula: see text]Gbps fiber-optic interfaces. Here, we describe the system design of the digital spectrometer, the pSPEC board, and the adaptation of pSPEC to implement a high spectral resolution (61[Formula: see text]kHz), high dynamic range ([Formula: see text]:1) correlation spectrometer covering the entire CD/EoR band. As the SARAS radiometer is required to be deployed in remote locations where terrestrial radio frequency interference (RFI) is a minimum, the spectrometer is designed to be compact, portable and operating off internal batteries. The paper includes an evaluation of the spectrometer’s susceptibility to RFI and capability to detect signals from CD/EoR.
Publisher
World Scientific Pub Co Pte Lt
Subject
Astronomy and Astrophysics,Instrumentation
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献