Quantization of κ-deformed Dirac equation

Author:

Harikumar E.1,Rajagopal Vishnu1

Affiliation:

1. School of Physics, University of Hyderabad, Central University P.O., Hyderabad-500046, Telangana, India

Abstract

In this paper, we study the quantization of Dirac field theory in the [Formula: see text]-deformed space–time. We adopt a quantization method that uses only equations of motion for quantizing the field. Starting from [Formula: see text]-deformed Dirac equation, valid up to first order in the deformation parameter [Formula: see text], we derive deformed unequal time anticommutation relation between deformed field and its adjoint, leading to undeformed oscillator algebra. Exploiting the freedom of imposing a deformed unequal time anticommutation relations between [Formula: see text]-deformed spinor and its adjoint, we also derive a deformed oscillator algebra. We show that deformed number operator is the conserved charge corresponding to global phase transformation symmetry. We construct the [Formula: see text]-deformed conserved currents, valid up to first order in [Formula: see text], corresponding to parity and time-reversal symmetries of [Formula: see text]-deformed Dirac equation also. We show that these conserved currents and charges have a mass-dependent correction, valid up to first order in [Formula: see text]. This novel feature is expected to have experimental significance in particle physics. We also show that it is not possible to construct a conserved current associated with charge conjugation, showing that the Dirac particle and its antiparticle satisfy different equations in [Formula: see text] space–time.

Publisher

World Scientific Pub Co Pte Lt

Subject

Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3