On isometry anomalies in minimal 𝒩 = (0,1) and 𝒩 = (0,2) sigma models

Author:

Chen Jin1,Cui Xiaoyi2,Shifman Mikhail13,Vainshtein Arkady13

Affiliation:

1. Department of Physics, University of Minnesota, Minneapolis, MN 55455, USA

2. Mathematisches Institut, Georg-August Universität Göttingen, Göttingen, D-37073, Germany

3. William I. Fine Theoretical Physics Institute, University of Minnesota, Minneapolis, MN 55455, USA

Abstract

The two-dimensional minimal supersymmetric sigma models with homogeneous target spaces [Formula: see text] and chiral fermions of the same chirality are revisited. In particular, we look into the isometry anomalies in [Formula: see text] and [Formula: see text] models. These anomalies are generated by fermion loop diagrams which we explicitly calculate. In the case of [Formula: see text] sigma models the first Pontryagin class vanishes, so there is no global obstruction for the minimal [Formula: see text] supersymmetrization of these models. We show that at the local level isometries in these models can be made anomaly free by specifying the counterterms explicitly. Thus, there are no obstructions to quantizing the minimal [Formula: see text] models with the [Formula: see text] target space while preserving the isometries. This also includes [Formula: see text] (equivalent to [Formula: see text]) which is an exceptional case from the [Formula: see text] series. For other [Formula: see text] models, the isometry anomalies cannot be rescued even locally, this leads us to a discussion on the relation between the geometric and gauged formulations of the [Formula: see text] models to compare the original of different anomalies. A dual formalism of [Formula: see text] model is also given, in order to show the consistency of our isometry anomaly analysis in different formalisms. The concrete counterterms to be added, however, will be formalism dependent.

Funder

U.S. Department of Energy

Publisher

World Scientific Pub Co Pte Lt

Subject

Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3