Singularities of worldsheets associated with null Cartan curves in Lorentz–Minkowski space–time

Author:

Liu Siyao1,Wang Zhigang1ORCID

Affiliation:

1. School of Mathematical Sciences, Harbin Normal University, Harbin, 150025, P. R. China

Abstract

In this paper, as applications of singularity theory, we study the singularities of several worldsheets generated by null Cartan curves in Lorentz–Minkowski space–time. Using the approach of the unfolding theory in singularity theory, we establish the relationships between these worldsheets and invariants such that the cuspidal edge type of singularity and the swallowtail type of singularity can be characterized by these invariants, respectively. Meanwhile, the contact of the tangent curve of a null Cartan curve with some model surfaces are discussed in detail. In addition, we also describe the dual relationships between the tangent curve of a null Cartan curve and these worldsheets. Finally, some concrete examples are provided to explain our theoretical results.

Funder

Postdoctoral Science Foundation of Jiangsu Province

Natural Science Foundation of Heilongjiang Province (CN)

Publisher

World Scientific Pub Co Pte Lt

Subject

Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Null cartan geodesic isophote curves in Minkowski 3-space;International Journal of Geometric Methods in Modern Physics;2024-02-20

2. Singularity properties of Lorentzian Darboux surfaces in Lorentz–Minkowski spacetime;Research in the Mathematical Sciences;2024-01-30

3. Topological structures of event horizons along framed null Cartan curves in Minkowski space;International Journal of Geometric Methods in Modern Physics;2022-07-15

4. Duality and singularities of world sheets and worldlines of geometric particles along framed base curves in world hyper-sheet;International Journal of Modern Physics A;2022-06-30

5. Lorentz–Darboux rectifying surfaces and osculating surfaces along frontal curves on timelike surfaces;International Journal of Geometric Methods in Modern Physics;2022-05-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3