Casimir effect for the Higgs field at finite temperature

Author:

Santos A. F.1,Khanna Faqir C.2

Affiliation:

1. Instituto de Física, Universidade Federal de Mato Grosso, 78060-900, Cuiabá, Mato Grosso, Brazil

2. Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Road Victoria, BC, Canada

Abstract

In early 1970, it was postulated that there exists a zero spin quantum field, called Higgs field, that is present in all universe. The potential energy of the Higgs field is transferred to particles. Hence they acquire mass. These ideas were essential in fulfilling the basic need for a particle, called Higgs, with mass. These particles are called Higgs particles with spin zero with its mass to be [Formula: see text][Formula: see text]125 GeV. This raises the question as to its physical effects. If these particles are present, will they exhibit a Casimir effect and also obey the Stefan–Boltzmann Law? Assuming the dynamics of this field, will these effects change with temperature. The present calculation uses thermo field dynamics formalism to calculate temperature effects.

Publisher

World Scientific Pub Co Pte Lt

Subject

Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3