Affiliation:
1. Center for Theoretical Studies of Physical Systems, Clark Atlanta University, Atlanta, Georgia, 30314, USA
Abstract
The generalized (vacuum) field equations corresponding to gravity on curved 2d-dimensional (dim) tangent bundle/phase spaces and associated with the geometry of the (co)tangent bundle TMd-1, 1(T*Md-1, 1) of a d-dim space–time Md-1, 1 are investigated following the strict distinguished d-connection formalism of Lagrange–Finsler and Hamilton–Cartan geometry. It is found that there is no mathematical equivalence with Einstein's vacuum field equations in space–times of 2d dimensions, with two times, after a d+d Kaluza–Klein-like decomposition of the 2d-dim scalar curvature R is performed and involving the introduction of a nonlinear connection [Formula: see text]. The physical applications of the 4-dim phase space metric solutions found in this work, corresponding to the cotangent space of a 2-dim space–time, deserve further investigation. The physics of two times may be relevant in the solution to the problem of time in quantum gravity and in the explanation of dark matter. Finding nontrivial solutions of the generalized gravitational field equations corresponding to the 8-dim cotangent bundle (phase space) of the 4-dim space–time remains a challenging task.
Publisher
World Scientific Pub Co Pte Lt
Subject
Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献