Type 0 ℤ2 × ℤ2 heterotic string orbifolds and misaligned supersymmetry

Author:

Faraggi Alon E.1,Matyas Viktor G.1,Percival Benjamin1

Affiliation:

1. Department of Mathematical Sciences, University of Liverpool, Liverpool L69 7ZL, UK

Abstract

The [Formula: see text] heterotic string orbifold yielded a large space of phenomenological three generation models and serves as a testing ground to explore how the Standard Model of particle physics may be incorporated in a theory of quantum gravity. In this paper, we explore the existence of type 0 models in this class of string compactifications. We demonstrate the existence of type 0 [Formula: see text] heterotic string orbifolds, and show that there exist a large degree of redundancy in the space of GGSO projection coefficients when the type 0 restrictions are implemented. We explore the existence of such configurations in several constructions. The first correspond to essentially a unique configuration out of a priori [Formula: see text] discrete GGSO choices. We demonstrate this uniqueness analytically, as well as by the corresponding analysis of the partition function. A wider classification is performed in [Formula: see text]-models and [Formula: see text]-models, where the first class correspond to compactifications of a tachyonic ten-dimensional heterotic string vacuum, whereas the second correspond to compactifications of the ten-dimensional nontachyonic [Formula: see text]. We show that the type 0 models in both cases contain physical tachyons at the free fermionic point in the moduli space. These vacua are therefore necessarily unstable, but may be instrumental in exploring the string dynamics in cosmological scenarios. We analyze the properties of the string one-loop amplitude. Naturally, these are divergent due to the existence of tachyonic states. We show that once the tachyonic states are removed by hand the amplitudes are finite and exhibit a form of misaligned supersymmetry.

Funder

EPSRC

STFC

Publisher

World Scientific Pub Co Pte Ltd

Subject

Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3