Affiliation:
1. Department of Physics, National Cheng Kung University, 1 University Road, Tainan City, Taiwan 701, ROC
Abstract
The Hamiltonian of a nonrelativistic particle coupled to non-Abelian gauge fields is defined to construct a non-Abelian gauge theory. The Hamiltonian which includes isospin as a dynamical variable dictates the dynamics of the particle and isospin according to the Poisson bracket that incorporates the Lie algebraic structure of isospin. The generalized Poisson bracket allows us to derive Wong’s equations, which describe the dynamics of isospin, and the homogeneous (sourceless) equations for non-Abelian gauge fields by following Feynman’s proof of the homogeneous Maxwell equations.It is shown that the derivation of the homogeneous equations for non-Abelian gauge fields using the generalized Poisson bracket does not require that Wong’s equations be defined in the time-axial gauge, which was used with the commutation relation. The homogeneous equations derived by using the commutation relation are not Galilean and Lorentz invariant. However, by using the generalized Poisson bracket, it can be shown that the homogeneous equations are not only Galilean and Lorentz invariant but also gauge independent. In addition, the quantum ordering ambiguity that arises from using the commutation relation can be avoided when using the Poisson bracket.From the homogeneous equations, which define the “electric field” and “magnetic field” in terms of non-Abelian gauge fields, we construct the gauge and Lorentz invariant Lagrangian density and derive the inhomogeneous equations that describe the interaction of non-Abelian gauge fields with a particle.
Publisher
World Scientific Pub Co Pte Lt
Subject
Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献