Affiliation:
1. Center for Cosmology and Particle Physics, Department of Physics, New York University, New York, NY 10003, USA
Abstract
Arguments are summarized, that neutral matter made of helium, carbon, etc., should form a quantum liquid at the above-atomic but below-nuclear densities for which the charged spin-0 nuclei can condense. The resulting substance has distinctive features, such as a mass gap in the bosonic sector and a gap-less spectrum of quasifermions, which determine its thermodynamic properties. I discuss an effective field theory description of this substance, and as an example, consider its application to calculation of a static potential between heavy charged impurities. The potential exhibits a long-range oscillatory behavior in which both the fermionic and bosonic low-energy degree of freedom contribute. Observational consequences of the condensate for cooling of helium-core white dwarf stars are briefly discussed.
Publisher
World Scientific Pub Co Pte Lt
Subject
Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献