Kerr–Newman electron as spinning soliton

Author:

Burinskii Alexander1

Affiliation:

1. Laboratory of Theoretical Physics, NSI, Russian Academy of Sciences, B. Tulskaya 52, Moscow 115191, Russia

Abstract

Measurable parameters of the electron indicate that its background should be described by the Kerr–Newman (KN) solution. The spin/mass ratio of the electron is extreme large and the black hole (BH) horizons disappear, opening a topological defect of space–time — the Kerr singular ring of Compton size, which may be interpreted as a closed fundamental string to low-energy string theory. The singular and two-sheeted structure of the corresponding Kerr space has to be regularized, and we consider the old problem of regularizing the source of the KN solution. As a development of the earlier Keres–Israel–Hamity–López model, we describe the model of smooth and regular source forming a gravitating and relativistically rotating soliton based on the chiral field model and the Higgs mechanism of broken symmetry. The model reveals some new remarkable properties: (1) the soliton forms a relativistically rotating bubble of Compton radius, which is filled by the oscillating Higgs field in a pseudo-vacuum state; (2) the boundary of the bubble forms a domain wall which interpolates between the internal flat background and the external exact KN solution; (3) the phase transition is provided by a system of chiral fields; (4) the vector potential of the external KN solution forms a closed Wilson loop which is quantized, giving rise to a quantized spin of the soliton and (5) the soliton is bordered by a closed string, which is a part of the general complex stringy structure.

Publisher

World Scientific Pub Co Pte Lt

Subject

Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3