A real-time thermal field theoretical analysis of Kubo-type shear viscosity: Numerical understanding with simple examples

Author:

Ghosh Sabyasachi1

Affiliation:

1. Instituto de Fisica Teorica, Universidade Estadual Paulista, Rua Dr. Bento Teobaldo Ferraz, 271, 01140-070 Sao Paulo, SP, Brazil

Abstract

A real-time thermal field theoretical calculation of shear viscosity has been described in the Kubo formalism for bosonic and fermionic medium. The two-point function of viscous-stress tensor in the lowest order provides one-loop skeleton diagram of boson or fermion field for bosonic or fermionic matter. According to the traditional diagrammatic technique of transport coefficients, the finite thermal width of boson or fermion is introduced in their internal lines during the evaluation of boson–boson or fermion–fermion loop diagram. These thermal widths of ϕ boson and ψ fermion are respectively obtained from the imaginary part of self-energy for ϕΦ and ψΦ loops, where interactions of higher mass Φ boson with ϕ and ψ are governed by the simple ϕϕΦ and [Formula: see text] interaction Lagrangian densities. A two-loop diagram, having same power of coupling constant as in the one-loop diagram, is deduced and its contribution appears much lower than the one-loop values of shear viscosity. Therefore, the one-loop results of Kubo-type shear viscosity may be considered as leading order results for this simple ϕϕΦ and [Formula: see text] interactions. This approximation is valid for any values of coupling constant and at the temperatures greater than the mass of constituent particles of the medium.

Publisher

World Scientific Pub Co Pte Lt

Subject

Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3