Equivalence principle for antiparticles and its limitations

Author:

Jentschura U. D.1ORCID

Affiliation:

1. Department of Physics, Missouri University of Science and Technology, Rolla, Missouri 65409, USA

Abstract

We investigate the particle–antiparticle symmetry of the gravitationally coupled Dirac equation, both on the basis of the gravitational central-field problem and in general curved space–time backgrounds. First, we investigate the central-field problem with the help of a Foldy–Wouthuysen transformation. This disentangles the particle from the antiparticle solutions, and leads to a “matching relation” of the inertial and the gravitational mass, which is valid for both particles as well as antiparticles. Second, we supplement this derivation by a general investigation of the behavior of the gravitationally coupled Dirac equation under the discrete symmetry of charge conjugation, which is tantamount to a particle[Formula: see text]antiparticle transformation. Limitations of the Einstein equivalence principle due to quantum fluctuations are discussed. In quantum mechanics, the question of where and when in the Universe an experiment is being performed can only be answered up to the limitations implied by Heisenberg’s Uncertainty Principle, questioning an assumption made in the original formulation of the Einstein equivalence principle. Furthermore, at some level of accuracy, it becomes impossible to separate nongravitational from gravitational experiments, leading to further limitations.

Funder

Division of Physics

Publisher

World Scientific Pub Co Pte Lt

Subject

Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3