Vacuum energy density and pressure inside a soft wall

Author:

Shayit Agam12,Fulling S. A.13,Settlemyre T. E.13,Merritt Joseph13

Affiliation:

1. Department of Physics and Astronomy, Texas A&M University, College Station, Texas 77843-4242, USA

2. Department of Computer Science and Engineering, Texas A&M University, College Station, Texas 77843-3112, USA

3. Department of Mathematics, Texas A&M University, College Station, Texas 77843-3368, USA

Abstract

In the study of quantum vacuum energy and the Casimir effect, it is desirable to model the conductor by a potential of the form [Formula: see text]. This “soft wall” model was proposed so as to avoid the violation of the principle of virtual work under ultraviolet regularization that occurs for the standard Dirichlet wall. The model was formalized for a massless scalar field, and the expectation value of the stress tensor has been expressed in terms of the reduced Green function of the equation of motion. In the limit of interest, [Formula: see text], which approximates a Dirichlet wall, a closed-form expression for the reduced Green function cannot be found, so piecewise approximations incorporating the perturbative and WKB expansions of the Green function, along with interpolating splines in the region where neither expansion is valid, have been developed. After reviewing this program, in this paper, we apply the scheme to the wall with [Formula: see text] and use it to compute the renormalized energy density and pressure inside the cavity for various values of the conformal parameter. The consistency of the results is verified by comparison to their numerical counterparts and verification of the trace anomaly and the conservation law. Finally, we use the approximation scheme to reproduce the energy density inside the quadratic wall, which was previously calculated exactly but with some uncertainty.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3