Thermal effects on the Casimir energy of a Lorentz-violating scalar in magnetic field

Author:

Erdas Andrea1ORCID

Affiliation:

1. Department of Physics, Loyola University Maryland, 4501 North Charles Street, Baltimore, Maryland 21210, USA

Abstract

In this work, I investigate the finite temperature Casimir effect due to a massive and charged scalar field that breaks Lorentz invariance in a CPT-even, aether-like way. I study the cases of Dirichlet and mixed (Dirichlet–Neumann) boundary conditions on a pair of parallel plates. I will not examine the case of Neumann boundary conditions since it produces the same results as Dirichlet boundary conditions. The main tool used in this investigation is the [Formula: see text]-function technique that allows me to obtain the Helmholtz free energy and Casimir pressure in the presence of a uniform magnetic field perpendicular to the plates. Three cases of Lorentz asymmetry are studied: timelike, spacelike and perpendicular to the magnetic field, spacelike and parallel to the magnetic field. Asymptotic cases of small plate distance, high temperature, strong magnetic field, and large mass will be considered for each of the three types of Lorentz asymmetry and each of the two types of boundary conditions examined. In all these cases, simple and very accurate analytic expressions of the thermal corrections to the Casimir energy and pressure are obtained and I discover that these corrections strongly depend on the direction of the unit vector that produces the breaking of the Lorentz symmetry.

Publisher

World Scientific Pub Co Pte Lt

Subject

Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Casimir effect of a rough membrane in 2 + 1 Hořava–Lifshitz theory;The European Physical Journal C;2024-01-21

2. Casimir free energy for massive scalars: A comparative study of various approaches;Annals of Physics;2023-12

3. Casimir effect in 2+1 Hořava gravity;Physics Letters B;2023-09

4. Magnetic corrections to the fermionic Casimir effect in Horava-Lifshitz theories;International Journal of Modern Physics A;2023-08-20

5. Massive fermion between two parallel chiral plates;Progress of Theoretical and Experimental Physics;2022-12-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3