Finite Temperature Lattice QCD in the Large N Limit

Author:

Billó M.1,Caselle M.2,d'Adda A.2,Panzeri S.3

Affiliation:

1. Nordita, Blegdamsvej 17, Copenhagen ø, Denmark

2. Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Dipartimento di Fisica Teorica dell'Università di Torino, via P. Giuria 1, I-10125 Turin , Italy

3. SISSA, Via Beirut 2-4, I-34013, Trieste , Italy

Abstract

Our aim is to give a self-contained review of recent advances in the analytic description of the deconfinement transition and determination of the deconfinement temperature in lattice QCD at large N. We also include some new results, as for instance in the comparison of the analytic results with Monte Carlo simulations. We first review the general set-up of finite temperature lattice gauge theories, using asymmetric lattices, and develop a consistent perturbative expansion in the coupling βs of the spacelike plaquettes. We study in detail the effective models for the Polyakov loop obtained, in the zeroth order approximation in βs, both from the Wilson action (symmetric lattice) and from the heat kernel action (completely asymmetric lattice). The distinctive feature of the heat kernel model is its relation with two-dimensional QCD on a cylinder; the Wilson model, on the other hand, can be exactly reduced to a twisted one-plaquette model via a procedure of the Eguchi–Kawai type. In the weak coupling regime both models can be related to exactly solvable Kazakov–Migdal matrix models. The instability of the weak coupling solution is due in both cases to a condensation of instantons; in the heat kernel case, this is directly related to the Douglas–Kazakov transition of QCD2. A detailed analysis of these results provides rather accurate predictions of the deconfinement temperature. In spite of the zeroth order approximation they are in good agreement with the Monte Carlo simulations in 2 + 1 dimensions, while in 3 + 1 dimensions they only agree with the Monte Carlo results away from the continuum limit.

Publisher

World Scientific Pub Co Pte Lt

Subject

Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3