Affiliation:
1. Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee, 1784 Sofia, Bulgaria
Abstract
We give a review of some group-theoretical results related to nonrelativistic holography. Our main playgrounds are the Schrödinger equation and the Schrödinger algebra. We first recall the interpretation of nonrelativistic holography as equivalence between representations of the Schrödinger algebra describing bulk fields and boundary fields. One important result is the explicit construction of the boundary-to-bulk operators in the framework of representation theory, and that these operators and the bulk-to-boundary operators are intertwining operators. Further, we recall the fact that there is a hierarchy of equations on the boundary, invariant with respect to Schrödinger algebra. We also review the explicit construction of an analogous hierarchy of invariant equations in the bulk, and that the two hierarchies are equivalent via the bulk-to-boundary intertwining operators. The derivation of these hierarchies uses a mechanism introduced first for semisimple Lie groups and adapted to the nonsemisimple Schrödinger algebra. These require development of the representation theory of the Schrödinger algebra which is reviewed in some detail. We also recall the q-deformation of the Schrödinger algebra. Finally, the realization of the Schrödinger algebra via difference operators is reviewed.
Publisher
World Scientific Pub Co Pte Lt
Subject
Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献