Boundary conditions, gauge fixing ambiguities and exact expectation values in U(1) lattice gauge theory

Author:

Pinto Carlos1ORCID

Affiliation:

1. School of Mathematics and Neuropsychiatric Genetics Research Group, University of Dublin, College Green, Dublin, D2, Ireland

Abstract

We analyze the interplay between gauge fixing and boundary conditions in two-dimensional U(1) lattice gauge theory. We show on the basis of a general argument that periodic boundary conditions result in an ill-defined weak coupling approximation but that the approximation can be made well-defined if the boundaries are fixed to zero. We confirm this result in the particular case of the Feynman gauge. We show that the zero momentum mode divergence in the propagator that appears in the Feynman gauge vanishes when the weak coupling approximation is well-defined. In addition we obtain exact results (for arbitrary coupling), including finite size corrections, for the partition function and for general one-point and two-point functions in the axial gauge under both periodic and zero boundary conditions and confirm these results numerically. The dependence of these objects on both lattice size and coupling constant is investigated using specific examples. These exact results may provide insight into similar gauge fixing issues in more complex models.

Publisher

World Scientific Pub Co Pte Lt

Subject

Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3