Normalizability analysis of the generalized quantum electrodynamics from the causal point of view

Author:

Bufalo R.1ORCID,Pimentel B. M.2,Soto D. E.3

Affiliation:

1. Departamento de Física, Universidade Federal de Lavras, Caixa Postal 3037, 37200-000 Lavras, MG, Brazil

2. Instituto de Física Teórica, Universidade Estadual Paulista, Rua Dr. Bento Teobaldo Ferraz 271, Bloco II Barra Funda, São Paulo – SP, 01140-070, Brazil

3. Facultad de Ciencias, Universidad Nacional de Ingeniería UNI, Avenida Túpac Amaru S/N apartado 31139 Lima, Perú

Abstract

The causal perturbation theory is an axiomatic perturbative theory of the S-matrix. This formalism has as its essence the following axioms: causality, Lorentz invariance and asymptotic conditions. Any other property must be showed via the inductive method order-by-order and, of course, it depends on the particular physical model. In this work we shall study the normalizability of the generalized quantum electrodynamics in the framework of the causal approach. Furthermore, we analyze the implication of the gauge invariance onto the model and obtain the respective Ward–Takahashi–Fradkin identities.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

World Scientific Pub Co Pte Lt

Subject

Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Normalized Solutions for the Critical Schrödinger–Bopp–Podolsky System;Bulletin of the Malaysian Mathematical Sciences Society;2023-11-22

2. Positive solutions for a non-autonomous Schrödinger-Bopp-Podolsky system;Journal of Mathematical Physics;2023-10-01

3. Normalized solutions for Sobolev critical Schrodinger-Bopp-Podolsky systems;Electronic Journal of Differential Equations;2023-09-05

4. Multiplicity of solutions for Schrödinger–Bopp–Podolsky systems;Georgian Mathematical Journal;2023-08-25

5. Schrödinger–Bopp–Podolsky System with Steep Potential Well;Qualitative Theory of Dynamical Systems;2023-07-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3