On the discrete version of the black hole solution

Author:

Khatsymovsky V. M.1ORCID

Affiliation:

1. Budker Institute of Nuclear Physics of Siberian Branch Russian Academy of Sciences, Novosibirsk, 630090, Russia

Abstract

A Schwarzschild-type solution in Regge calculus is considered. Earlier, we considered a mechanism of loose fixing of edge lengths due to the functional integral measure arising from integration over connection in the functional integral for the connection representation of the Regge action. The length scale depends on a free dimensionless parameter that determines the final functional measure. For this parameter and the length scale large in Planck units, the resulting effective action is close to the Regge action. Earlier, we considered the Regge action in terms of affine connection matrices as functions of the metric inside the 4-simplices and found that it is a finite-difference form of the Hilbert–Einstein action in the leading order over metric variations between the 4-simplices. Now we take the (continuum) Schwarzschild problem in the form where spherical symmetry is not set a priori and arises just in the solution, take the finite-difference form of the corresponding equations and get the metric (in fact, in the Lemaitre or Painlevé–Gullstrand like frame), which is nonsingular at the origin, just as the Newtonian gravitational potential, obeying the difference Poisson equation with a point source, is cutoff at the elementary length and is finite at the source.

Publisher

World Scientific Pub Co Pte Lt

Subject

Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the discrete version of the Kerr–Newman solution;International Journal of Modern Physics A;2023-02-20

2. On the discrete version of the Reissner–Nordström solution;International Journal of Modern Physics A;2022-04-30

3. On the discrete version of the Kerr geometry;International Journal of Modern Physics A;2021-07-07

4. On the Discrete Version of the Schwarzschild Problem;Universe;2020-10-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3