Contrastive analysis of two energy gradients in the ultra-strong magnetic fields

Author:

Weng Zi-Hua12ORCID

Affiliation:

1. School of Aerospace Engineering, Xiamen University, Xiamen, China

2. College of Physical Science and Technology, Xiamen University, Xiamen, China

Abstract

The paper aims to apply the complex-octonions to explore the variable gravitational mass and energy gradient of several particles in the external ultra-strong magnetic fields. J. C. Maxwell was the first to introduce the algebra of quaternions to study the physical properties of electromagnetic fields. Some scholars follow up this method in the field theories. Nowadays, they employ the complex-octonions to analyze simultaneously the physical quantities of electromagnetic and gravitational fields, including the field potential, field strength, field source, linear momentum, angular momentum, torque, and force. When the octonion force is equal to zero, it is able to deduce eight independent equilibrium equations, especially the force equilibrium equation, precessional equilibrium equation, mass continuity equation, and current continuity equation. In the force equilibrium equation, the gravitational mass is variable. The gravitational mass is the sum of the inertial mass and a few tiny terms. These tiny terms will be varied with not only the fluctuation of field strength and of potential energy, but also the spatial dimension of velocity. The study reveals that it is comparatively untoward to attempt to measure directly the variation of these tiny terms of gravitational mass in the ultra-strong magnetic field. However it is not such difficult to measure the energy gradient relevant to the variation of these tiny terms of gravitational mass. In the complex-octonion space, the gravitational mass is a sort of variable physical quantity, rather than an intrinsic property of any physical object. And this inference is accordant with the academic thought of “the mass is not an intrinsic property any more” in the unified electroweak theory.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Torques and angular momenta of fluid elements in the octonion spaces;Mathematical Methods in the Applied Sciences;2022-11-08

2. Frequencies of astrophysical jets and gravitational strengths in the octonion spaces;International Journal of Modern Physics D;2022-01-31

3. Dual-complex quaternion representation of gravitoelectromagnetism;International Journal of Geometric Methods in Modern Physics;2021-07-07

4. Sedeonic Equations in Field Theory;Advances in Applied Clifford Algebras;2020-06-25

5. Precessional angular velocity and field strength in the complex octonion space;International Journal of Geometric Methods in Modern Physics;2020-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3