BLOCH–NORDSIECK ESTIMATES OF A HIGH-TEMPERATURE SCALAR FIELD THEORY

Author:

CANDELPERGHER B.1,FRIED H. M.2,GRANDOU T.3

Affiliation:

1. Laboratoire J.A. Dieudonné, UMR CNRS 6621, UNSA Parc Valrose, 06108 Nice, France

2. Brown University, Physics Department, Box 1843, Providence, RI 02912, USA

3. Institut Non Linéaire de Nice UMR CNRS 6618, 1361, Route des Lucioles, 06560 Valbonne, France

Abstract

In anticipation of subsequent application to QED and QCD, we consider the case of a model, high temperature, relativistic, scalar field theory. We introduce into the exact, nonperturbative, functional expressions of this "quenched" model, a new Fradkin representation, and extract the infrared/Bloch–Nordsieck/(IR/BN) contributions of every perturbative graph, in order to circumvent the lack of a clear-cut separation of energy scales of previous semiperturbative treatments. Our results are applicable to the absorption of a fast particle which enters a heat bath, as well as to the propagation of a symmetric pulse within the thermal medium due to the appearance of an instantaneous, shockwave-like source acting in the medium. In momentum space, the former case displays a propagator which decays exponentially with increasing time, in addition to a new damping factor independent of time. The latter case displays an exponential growth with time of the symmetric pulse, generating effective and increasing plasmon waves, in competition with damping independent of time. When extended to QCD, qualitative applications could be made to RHIC scattering, in which a fireball appears, expands and is damped away.

Publisher

World Scientific Pub Co Pte Lt

Subject

Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3