FADDEEV–JACKIW FORMALISM FOR CONSTRAINED SYSTEMS WITH GRASSMANN DYNAMICAL FIELD VARIABLES

Author:

MANAVELLA EDMUNDO C.12

Affiliation:

1. Instituto de Física Rosario (CONICET), 27 de Febrero 210 bis, S2000EZP Rosario, Argentina

2. Facultad de Ciencias Exactas, Ingeniería y Agrimensura (UNR), Av. Pellegrini 250, S2000BTP Rosario, Argentina

Abstract

The Faddeev–Jackiw canonical quantization formalism for constrained systems with Grassmann dynamical variables within the framework of the field theory is reviewed. First, by means of a iterative process, the symplectic supermatrix is constructed and their associated constraints are found. Next, by taking into account the phase space of the system, the constraint structure is considered. It is found that, if there are no auxiliary dynamical field variables, the supermatrix whose elements are the Bose–Fermi brackets between the constraints associated with the independent dynamical field variables coincides with the symplectic supermatrix corresponding to these independent variables. An alternative procedure to obtain the first-class constraints is given. It is shown that for systems with gauge symmetries, by means of suitable gauge-fixing conditions, a nonsingular final symplectic supermatrix can be found. Then, two possible ways of calculating the Faddeev–Jackiw brackets are pointed out. The relation between the Faddeev–Jackiw and Dirac brackets is discussed. Throughout the previous developments, the Faddeev–Jackiw and Dirac algorithms are compared. Finally, the Faddeev–Jackiw canonical quantization method is applied to a simple model and the obtained results are compared with the ones corresponding to the use of the Dirac procedure on this model.

Publisher

World Scientific Pub Co Pte Lt

Subject

Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3