Affiliation:
1. Instituto de Astrofisica de Canarias, 38200, La Laguna, Tenerife, Spain
Abstract
Assuming that the unpredictability associated with many dynamical systems is an artefact of the differential treatment of their time evolution, we propose here an integral treatment as an alternative. We make the assumption that time is two-dimensional, and that the time distribution in the past of observables characterizing the dynamical system, is some characteristic "projection" of its time distribution in the future. We show here how this method can be used to predict the time evolution of several dynamically complex systems over long time intervals. The present work can be considered as the natural next step to the assumption of nonderivability for subatomic dynamical systems to explain the connection between Quantum Mechanics and General Relativity. Here we propose that matter and space–time are not only nonderivable but also show structural discontinuity. Starting with this premise we use continuity and derivability, but only as a first order approximation to reality. Extrapolation to very large or very small scales, or to predictions over long time scales for many natural systems on intermediate scales (human scales), may lead to chaotic behavior, or to nondeterministic or probabilistic theories.
Publisher
World Scientific Pub Co Pte Lt
Subject
Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics