Ground semi-physical simulation experiment study of one-dimensional drag-free control

Author:

Zhang Chu1,He Jianwu1,Chen Mingwei12,Duan Li12,Kang Qi12,

Affiliation:

1. National Micro Gravity Laboratory, Institute of Mechanics, CAS, Beijing 100190, China

2. School of Engineering Sciences, University of Chinese Academy of Science, Beijing 100049, China

Abstract

Drag-free control is one of the key technologies for the verification of Taiji-1 satellite. In the direction of sensitive axis, the drag-free controller receives the measurement signal from the high-precision gravitational reference sensor on the satellite, and instructs the micro-thruster system to counteract the disturbance force acting on the sensitive axis, so that the microgravity level in the sensing axis direction of the satellite can reach the order of 10[Formula: see text] m/s2 in the measurement band. In order to fully verify the drag-free control system, a ground one-dimensional drag-free semi-physical simulation system is built to simulate the performance of various payloads in the drag-free control loop, and to verify the performance and technical targets that the drag-free control system can achieve in the ground control loop. Through the small angle approximation, the equivalent relationship between the rotation of the experimental model and the translational motion of the experimental satellite in the direction of drag-free is demonstrated. In the condition of neglecting the stiffness and damping of the suspended pendulum, the parameters of the suspended pendulum are designed according to the principle of equal acceleration, and their effectiveness is verified by numerical simulation. According to the operation mode of on orbit drag-free control, the ground drag-free experimental scheme and drag-free controller are designed, and the experimental research and verification are carried out. The results show that the controller can effectively control the displacement and acceleration of the experimental model, and also can effectively suppress the disturbance of certain amplitude and frequency.

Publisher

World Scientific Pub Co Pte Lt

Subject

Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3