Improved HOM-mitigation for future SPS 33-Cell 200 MHz traveling-wave accelerating structures

Author:

Kramer P.12ORCID,Vollinger C.1

Affiliation:

1. CERN, 1211 Geneva 23, Switzerland

2. Institute of High Frequency Technology (IHF), RWTH Aachen University, Melatener Str. 25, 52074 Aachen, Germany

Abstract

The CERN SPS 200 MHz traveling-wave (TW) accelerating structures pose an intensity limitation for the planned High Luminosity (HL-) LHC upgrade. Higher-order modes (HOMs) around 630 MHz have been identified as one of the main sources of longitudinal multi-bunch instabilities. Improved mitigation of these HOMs with respect to today’s HOM-damping scheme is therefore an essential part of the LHC injectors upgrade (LIU) project. The basic principles of HOM-couplers in cavities and today’s damping scheme are reviewed. Before illustrating the numerous requirements, an improved damping scheme for the future 33-cell structures must be fulfilled. These are, among others, the mitigation of HOMs situated in the lower part of the structure where there are no access ports for extraction, a sufficient overall damping performance and an acceptable influence on the fundamental accelerating passband (FPB). Different approaches tackling these challenges are investigated and their performance, advantages and pitfalls are evaluated by ACE3P and CST electromagnetic (EM) field solver suites.

Funder

the National Energy Research Scientific Computing Center

Publisher

World Scientific Pub Co Pte Lt

Subject

Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

Reference8 articles.

1. P. Kramer and C. Vollinger, Proc. 13th Int. Computational Accelerator Physics Conf. (Key West, USA, 2018), pp. 35–41.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3