Affiliation:
1. Institute of Physics, University of São Paulo, Brazil
2. Lebedev Physics Institute, Moscow, Russia
Abstract
The aim of the present paper is to describe the symmetry structure of a general gauge (singular) theory, and, in particular, to relate the structure of gauge transformations with the constraint structure of a theory in the Hamiltonian formulation. We demonstrate that the symmetry structure of a theory action can be completely revealed by solving the so-called symmetry equation. We develop a corresponding constructive procedure of solving the symmetry equation with the help of a special orthogonal basis for the constraints. Thus, we succeed in describing all the gauge transformations of a given action. We find the gauge charge as a decomposition in the orthogonal constraint basis. Thus, we establish a relation between the constraint structure of a theory and the structure of its gauge transformations. In particular, we demonstrate that, in the general case, the gauge charge cannot be constructed with the help of some complete set of first-class constraints alone, because the charge decomposition also contains second-class constraints. The above-mentioned procedure of solving the symmetry equation allows us to describe the structure of an arbitrary symmetry for a general singular action. Finally, using the revealed structure of an arbitrary gauge symmetry, we give a rigorous proof of the equivalence of two definitions of physicality condition in gauge theories: one of them states that physical functions are gauge-invariant on the extremals, and the other requires that physical functions commute with FCC (the Dirac conjecture).
Publisher
World Scientific Pub Co Pte Lt
Subject
Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献