NON-NEWTONIAN MECHANICS

Author:

SALESI GIOVANNI12

Affiliation:

1. Università Statale di Bergamo, Facoltà di Ingegneria, Italy

2. Istituto Nazionale di Fisica Nucleare–Sezione di Milano, Italy

Abstract

The classical motion of spinning particles can be described without recourse to particular models or special formalisms, and without employing Grassmann variables or Clifford algebras, but simply by generalizing the usual spinless theory. We only assume the invariance with respect to the Poincaré group; and only requiring the conservation of the linear and angular momenta, we derive the zitterbewegung, namely the decomposition of the four-velocity in the usual Newtonian constant term pμ/m and in a non-Newtonian time-oscillating spacelike term. Consequently, free classical particles do not obey, in general, the Principle of Inertia. Superluminal motions are also allowed, without violating special relativity, provided that the energy–momentum moves along the worldline of the center-of-mass. Moreover, a nonlinear, nonconstant relation holds between the time durations measured in different reference frames. Newtonian mechanics is reobtained as a particular case of the present theory: namely for spinless systems with no zitterbewegung. Then we analyze the strict analogy between the classical zitterbewegung equation and the quantum Gordon-decomposition of the Dirac current. It is possible a variational formulation of the theory, through a Lagrangian containing also derivatives of the four-velocity: we get an equation of the motion, actually a generalization of the Newton law a=F/m, where non-Newtonian zitterbewegung-terms appear. Requiring the rotational symmetry and the reparametrization invariance we derive the classical spin vector and the conserved scalar Hamiltonian, respectively. We derive also the classical Dirac spin (a×v)/4m and analyze the general solution of the Eulero–Lagrange equation oscillating with the Compton frequency ω=2m. The interesting case of spinning systems with zero intrinsic angular momentum is also studied.

Publisher

World Scientific Pub Co Pte Lt

Subject

Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3