Toward construction of a consistent field theory with Poincaré covariance in terms of step-function-type basis functions for gauge fields

Author:

Fukushima Kimichika1,Sato Hikaru2

Affiliation:

1. Advanced Reactor System Engineering Department, Toshiba Nuclear Engineering Service Corporation, 8, Shinsugita-cho, Isogo-ku, Yokohama 235-8523, Japan

2. Emeritus, Department of Physics, Hyogo University of Education, Yashiro-cho, Kato-shi, Hyogo 673-1494, Japan

Abstract

This paper is a review by the authors concerning the construction of a Poincaré covariant (owing to space–time continuum) field-theoretic formalism in terms of step-function-type basis functions without ultraviolet divergences. This formalism analytically derives confinement/deconfinement, mass-gap and Regge trajectory for non-Abelian gauge fields, and gives solutions for self-interacting scalar fields. Fields propagate in space–time continuum and fields with finite degrees of freedom toward continuum limit have no ultraviolet divergence. Basis functions defined in a parameter space–time are mapped to real space–time. The authors derive a new solution comprised of classical fields as vacuum and quantum fluctuations, leading to the linear potential between the particle and antiparticle from the Wilson loop. The Polyakov line gives finite binding energies and reveals the deconfining property at high temperatures. The quantum action yields positive mass from the classical fields and quantum fluctuations produce the Coulomb potential. Pure Yang–Mills fields show the same mass-gap owing to the particle–antiparticle pair creation. The Dirac equation under linear potential is analytically solved in this formalism, reproducing the principal properties of Regge trajectories at a quantum level. Further outlook mentions a possibility of the difference between conventional continuum and present wave functions responsible for the cosmological constant.

Publisher

World Scientific Pub Co Pte Lt

Subject

Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3