Affiliation:
1. Leung Center for Cosmology and Particle Astrophysics, Institute of Astrophysics, Center for Theoretical Sciences, Taiwan
2. Department of Physics, National Taiwan University, Taipei 106, Taiwan
Abstract
These days we learn that, in our Universe, the dark matter occupies about 25% of the content, compared to only 5% of the "visible" ordinary matter. We propose that the description of the dark matter would be an extension of the Standard Model - a gauge theory. We all know that in the Standard Model we have three generations but still don't know why - the so-called "family problem". On other hand, in view of the masses and oscillations, the neutrinos now present some basic difficulty in the Standard Model. In this note, I propose that on top of the SUc(3)×, SU(2) × U(1) standard model there is an SUf(3) extension - a simple SUc(3) × SU(2) × U(1) × SUf(3) extended standard model. The family gauge bosons (familons) are massive through the so-called "colored" Higgs mechanism while the remaining Higgs particles are also massive. The three neutrinos, the electron-like, muon-like, and tao-like neutrinos, form the basic family triplets. Hopefully all the couplings to the "visible" matter are through the neutrinos, explaining why the dark matter is more than the visible matter in our Universe.
Publisher
World Scientific Pub Co Pte Lt
Subject
Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. CosPA 2015 and the Standard Model;International Journal of Modern Physics: Conference Series;2016-01
2. Implications of Neutrino Oscillations on the Dark-Matter World;Nuclear Physics B - Proceedings Supplements;2014-01
3. Neutrinos as a probe of dark-matter particles;Hyperfine Interactions;2013-03