Problems in measuring the Casimir forces at short separations

Author:

Palasantzas George1,Svetovoy Vitaly B.2ORCID

Affiliation:

1. Zernike Institute for Advanced Materials, University of Groningen — Nijenborgh 4, Groningen 9747 AG, The Netherlands

2. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Prospect 31, bld. 4, Moscow 119071, Russia

Abstract

The Casimir forces induced by fluctuations of electromagnetic field have been measured with a high precision at distances above [Formula: see text] nm. Although at shorter separations the magnitude of the force increases, it is more complicated to measure the forces at distances below [Formula: see text] nm. We review the problems that appear in this range of distances and their possible solutions. The first problem is related to the pull-in instability that occurs when two surfaces get too close to each other. As a particular manifestation of this problem, the spontaneous formation of the capillary bridges at distances [Formula: see text] nm is discussed. As an alternative, we discuss the method of adhered cantilever, which does not suffer from the pull-in instability. The second problem is related to the roughness of interacting surfaces that gives a significant deviation of the force from the expected scaling with the distance. We explain how the deviation can be related to the contribution of high asperities to the force. Characterization of the deposited rough films is also covered with a special emphasis on the excessive number of high asperities for the films deposited under nonequilibrium conditions. The third problem is related to the poor precision in the determination of the absolute distance between the bodies that results in a large total error in the force. We discuss the methods to determine the distance upon contact and cover a proposition to improve this precision in the method of adhered cantilever.

Funder

Netherlands Organization for Scientific Research

Russian Science Foundation

Publisher

World Scientific Pub Co Pte Ltd

Subject

Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3