SIMULATION OF A SCALAR FIELD ON A FUZZY SPHERE

Author:

FLORES FERNANDO GARCÍA1,MARTIN XAVIER2,O'CONNOR DENJOE3

Affiliation:

1. Departamento de Física, Cinvestav, Apartado Postal 70-543, México D.F. 0730, Mexico

2. Université François Rabelais, Tours, Laboratoire de Mathématiques et Physique Théorique, CNRS, UMR 6083, Fédération de Recherche Denis Poisson (FR 2964), France

3. School of Theoretical Physics, DIAS, 10 Burlington Road, Dublin 4, Ireland

Abstract

The ϕ4 real scalar field theory on a fuzzy sphere is studied numerically. We refine the phase diagram for this model where three distinct phases are known to exist: a uniformly ordered phase, a disordered phase, and a nonuniformly ordered phase where the spatial SO(3) symmetry of the round sphere is spontaneously broken and which has no classical equivalent. The three coexistence lines between these phases, which meet at a triple point, are carefully located, with particular attention paid to the one between the two ordered phases and the triple point itself. In the neighborhood of the triple point all phase boundaries are well approximated by straight lines which, surprisingly, have the same scaling. We argue that unless an extra term is added to enhance the effect of the kinetic term the infinite matrix limit of this model will not correspond to a real scalar field on the commutative sphere or plane.

Publisher

World Scientific Pub Co Pte Lt

Subject

Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fuzzy onionlike space as a matrix model;Physical Review D;2024-05-02

2. Fuzzy scalar field theories;The European Physical Journal Special Topics;2023-04-26

3. On Random Multitraces Matrix Models;International Journal of Theoretical Physics;2022-06

4. Eigenvalue-flipping algorithm for matrix Monte Carlo;Journal of High Energy Physics;2022-04-26

5. Quantized noncommutative geometry from multitrace matrix models;International Journal of Modern Physics A;2022-04-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3