Elastic scattering and diffractive dissociation in the light of LHC data

Author:

Khoze V. A.12,Martin A. D.1,Ryskin M. G.12

Affiliation:

1. Institute for Particle Physics Phenomenology, University of Durham, Durham DH1 3LE, UK

2. Petersburg Nuclear Physics Institute, NRC Kurchatov Institute, Gatchina, St. Petersburg, 188300, Russia

Abstract

We study the behavior of elastic and diffractive proton dissociation cross sections at high energy. First, we describe what would be expected to be observed at the Large Hadron Collider (LHC) based on conventional Regge theory. We emphasize the tension between these expectations and the recent LHC measurements, and we discuss the possibilty to modify the classic Reggeon Field Theory (RFT) in a physically-motivated way so as to accommodate the tendencies observed at the LHC. As a result, we show that we are able to achieve a "global" description of the wide variety of high energy elastic and diffractive data that are presently available, particularly from the LHC experiments. The model is based on only one pomeron pole, but includes multi-pomeron interactions and, significantly, includes the transverse momentum dependence of intermediate partons as a function of their rapidity, which provides the rapidity dependence of the multi-pomeron vertices. We give predictions for diffractive observables at LHC, and higher, energies.

Publisher

World Scientific Pub Co Pte Lt

Subject

Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exclusive doubly charged Higgs boson pair production in pp collisions at the LHC;Physical Review D;2023-02-10

2. Dark sector production via proton bremsstrahlung;Physical Review D;2022-05-31

3. Setting the string shoving picture in a new frame;Journal of High Energy Physics;2021-03

4. LHC as a photon-photon collider: Bounds on ΓX→γγ;Physical Review D;2021-02-19

5. Dynamics of diffractive dissociation;The European Physical Journal C;2021-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3