Microcosmos and Macrocosmos: A Look at these Two Universes in a Unified Way

Author:

Silva P. R.1

Affiliation:

1. Departamento de Física — ICEx, Universidade Federal de Minas Gerais, Caixa Postal 702, 30161.970, Belo Horizonte — MG, Brazil

Abstract

An extension of the MIT bag model, developed to describe the strong interaction inside the hadronic matter (nucleons), is proposed as a means to account for the confinement of matter in the universe. The basic hypotheses of the MIT bag model are worked out in a very simplified way and are also translated in terms of the gravitational force. We call the nucleon "microcosmos" and the bag-universe "macrocosmos." We have found a vacuum pressure of 10-15 atm at the boundary of the bag-universe as compared with a pressure of 1029 atm at the boundary of the nucleon. Both universes are also analyzed in the light of Sciama's theory of inertia, which links the inertial mass of a body to its interaction with the rest of the universe. One of the consequences of this work is that the Weinberg mass can be interpreted as a threshold mass, namely the mass where the frequency of the small oscillations of a particle coupled to the universe matches its de Broglie frequency. Finally, we estimate an averaged density of matter in the universe, corresponding to [Formula: see text] of the critical or closure density.

Publisher

World Scientific Pub Co Pte Lt

Subject

Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Asymptotic freedom and quarks confinement treated through Thompson’s approach;Canadian Journal of Physics;2016-08

2. Interação forte e eletromagnetismo;Revista Brasileira de Ensino de Física;2008-08-21

3. QUANTUM ELECTRODYNAMICS AND CHROMODYNAMICS TREATED THROUGH THOMPSON'S APPROACH;International Journal of Modern Physics A;2006-07-20

4. Quantum perturbative approach to discrete redshift;Astrophysics and Space Science;2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3