Affiliation:
1. Instituto de Matemáticas y Física Fundamental, CSIC, C/ Serrano 121, 28006 Madrid, Spain
Abstract
In this work, I review some aspects concerning the evolution of quantum low-energy fields in a foamlike space–time, with involved topology at the Planck scale but with a smooth metric structure at large length scales, as follows. Quantum gravitational fluctuations may induce a minimum length thus introducing an additional source of uncertainty in physics. The existence of this resolution limit casts doubts on the metric structure of space–time at the Planck scale and opens a doorway to nontrivial topologies, which may dominate Planck scale physics. This foamlike structure of space–time may show up in low-energy physics through loss of quantum coherence and mode-dependent energy shifts, for instance, which might be observable. Space–time foam introduces non-local interactions that can be modeled by a quantum bath, and low-energy fields evolve according to a master equation that displays such effects. Similar laws are also obtained for quantum mechanical systems evolving according to good real clocks, although the underlying Hamiltonian structure in this case establishes serious differences among both scenarios.
Publisher
World Scientific Pub Co Pte Lt
Subject
Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献