Affiliation:
1. Theoretical Physics Institute, University of Jena, 07743 Jena, Germany
Abstract
These lecture notes accompany two classes given at the NRHEP2 school. In the first lecture I introduce the basic concepts used for analyzing well-posedness, that is the existence of a unique solution depending continuously on given data, of evolution partial differential equations. I show how strong hyperbolicity guarantees well-posedness of the initial value problem. Symmetric hyperbolic systems are shown to render the initial boundary value problem well-posed with maximally dissipative boundary conditions. I discuss the Laplace–Fourier method for analyzing the initial boundary value problem. Finally, I state how these notions extend to systems that are first-order in time and second-order in space. In the second lecture I discuss the effect that the gauge freedom of electromagnetism has on the PDE status of the initial value problem. I focus on gauge choices, strong-hyperbolicity and the construction of constraint preserving boundary conditions. I show that strongly hyperbolic pure gauges can be used to build strongly hyperbolic formulations. I examine which of these formulations is additionally symmetric hyperbolic and finally demonstrate that the system can be made boundary stable.
Publisher
World Scientific Pub Co Pte Lt
Subject
Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics
Cited by
50 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献