Solitons: Conservation laws and dressing methods

Author:

Doikou Anastasia1ORCID,Findlay Iain1

Affiliation:

1. School of Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK

Abstract

We review some of the fundamental notions associated with the theory of solitons. More precisely, we focus on the issue of conservation laws via the existence of the Lax pair and also on methods that provide solutions to partial or ordinary differential equations that are associated to discrete or continuous integrable systems. The Riccati equation associated to a given continuous integrable system is also solved and hence suitable conserved quantities are derived. The notion of the Darboux–Bäcklund transformation is introduced and employed in order to obtain soliton solutions for specific examples of integrable equations. The Zakharov–Shabat dressing scheme and the Gelfand–Levitan–Marchenko equation are also introduced. Via this method, generic solutions are produced and integrable hierarchies are explicitly derived. Various discrete and continuous integrable models are employed as examples such as the Toda chain, the discrete nonlinear Schrödinger model, the Korteweg–de Vries and nonlinear Schrödinger equations as well as the sine-Gordon and Liouville models.

Publisher

World Scientific Pub Co Pte Lt

Subject

Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3