Covariant information theory and emergent gravity

Author:

Vanchurin Vitaly12

Affiliation:

1. Department of Physics, University of Minnesota, Duluth, Minnesota 55812, USA

2. Duluth Institute for Advanced Study, Duluth, Minnesota 55804, USA

Abstract

Informational dependence between statistical or quantum subsystems can be described with Fisher information matrix or Fubini-Study metric obtained from variations/shifts of the sample/configuration space coordinates. Using these (noncovariant) objects as macroscopic constraints, we consider statistical ensembles over the space of classical probability distributions (i.e. in statistical space) or quantum wave functions (i.e. in Hilbert space). The ensembles are covariantized using dual field theories with either complex scalar field (identified with complex wave functions) or real scalar field (identified with square roots of probabilities). We construct space–time ensembles for which an approximate Schrodinger dynamics is satisfied by the dual field (which we call infoton due to its informational origin) and argue that a full space–time covariance on the field theory side is dual to local computations on the information theory side. We define a fully covariant information-computation tensor and show that it must satisfy certain conservation equations. Then we switch to a thermodynamic description of the quantum/statistical systems and argue that the (inverse of) space–time metric tensor is a conjugate thermodynamic variable to the ensemble-averaged information-computation tensor. In (local) equilibrium, the entropy production vanishes, and the metric is not dynamical, but away from the equilibrium the entropy production gives rise to an emergent dynamics of the metric. This dynamics can be described approximately by expanding the entropy production into products of generalized forces (derivatives of metric) and conjugate fluxes. Near equilibrium, these fluxes are given by an Onsager tensor contracted with generalized forces and on the grounds of time-reversal symmetry, the Onsager tensor is expected to be symmetric. We show that a particularly simple and highly symmetric form of the Onsager tensor gives rise to the Einstein–Hilbert term. This proves that general relativity is equivalent to a theory of nonequilibrium (thermo)dynamics of the metric, but the theory is expected to break down far away from equilibrium where the symmetries of the Onsager tensor are to be broken.

Publisher

World Scientific Pub Co Pte Lt

Subject

Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards a Theory of Quantum Gravity from Neural Networks;Entropy;2021-12-21

2. Emergent Quantumness in Neural Networks;Foundations of Physics;2021-09-28

3. Toward a theory of machine learning;Machine Learning: Science and Technology;2021-05-13

4. Quantum information entropy and squeezing of -symmetric potential;Modern Physics Letters A;2021-03-09

5. Dual path integral: a non-perturbative approach to strong coupling;The European Physical Journal C;2021-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3