Covariant phase space, constraints, gauge and the Peierls formula

Author:

Khavkine Igor12

Affiliation:

1. Department of Mathematics, Trento University, Via Sommarive, 14-38123 Povo (TN), Italy

2. TIFPA-INFN, Trento, Italy

Abstract

It is well known that both the symplectic structure and the Poisson brackets of classical field theory can be constructed directly from the Lagrangian in a covariant way, without passing through the noncovariant canonical Hamiltonian formalism. This is true even in the presence of constraints and gauge symmetries. These constructions go under the names of the covariant phase space formalism and the Peierls bracket. We review both of them, paying more careful attention, than usual, to the precise mathematical hypotheses that they require, illustrating them in examples. Also an extensive historical overview of the development of these constructions is provided. The novel aspect of our presentation is a significant expansion and generalization of an elegant and quite recent argument by Forger and Romero showing the equivalence between the resulting symplectic and Poisson structures without passing through the canonical Hamiltonian formalism as an intermediary. We generalize it to cover theories with constraints and gauge symmetries and formulate precise sufficient conditions under which the argument holds. These conditions include a local condition on the equations of motion that we call hyperbolizability, and some global conditions of cohomological nature. The details of our presentation may shed some light on subtle questions related to the Poisson structure of gauge theories and their quantization.

Publisher

World Scientific Pub Co Pte Lt

Subject

Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

Reference92 articles.

1. Local symmetries and constraints

2. Č. Crnković and E. Witten, Three Hundred Years of Gravitation, eds. S. W. Hawking and W. Israel (Cambridge University Press, Cambridge, 1987) pp. 676–684.

3. ACTION PRINCIPLES AND GLOBAL GEOMETRY

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3