Affiliation:
1. School of Mathematics and Statistics, University of Melbourne, Parkville, Victoria 3010, Australia
Abstract
This paper describes an approach to quantum electrodynamics (QED) in curved space–time obtained by considering infinite-dimensional algebra bundles associated to a natural principal bundle [Formula: see text] associated with any locally conformally flat space–time, with typical fibers including the Fock space and a space of fermionic multiparticle states which forms a Grassmann algebra. Both these algebras are direct sums of generalized Hilbert spaces. The requirement of [Formula: see text] covariance associated with the geometry of space–time, where [Formula: see text] is the structure group of [Formula: see text], leads to the consideration of [Formula: see text] intertwining operators between various spaces. Scattering processes are associated with such operators and are encoded in an algebra of kernels. Intertwining kernels can be generated using [Formula: see text] covariant matrix-valued measures. Feynman propagators, fermion loops and the electron self-energy can be given well-defined interpretations as such measures. Divergence-free calculations in QED can be carried out by computing the spectra of these measures and kernels (a process called spectral regularization). As an example of the approach the precise Uehling potential function for the [Formula: see text] atom is calculated without requiring renormalization from which the Uehling contribution to the Lamb shift can be calculated exactly.
Publisher
World Scientific Pub Co Pte Lt
Subject
Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献