LOW ENERGY EFFECTIVE ACTION OF QUANTUM GRAVITY AND THE NATURALNESS PROBLEM

Author:

KAWAI HIKARU1

Affiliation:

1. Department of Physics, Kyoto University, Kyoto 606-8502, Japan

Abstract

In quantum gravity or string theory, it is natural to take the topology change of the space into account. We consider the low energy effective action for such case and show that it does not have a simple form of the local action but has a multilocal form. Actually, in quantum gravity or matrix model, there are some mechanisms that the low energy effective action becomes S eff = ∑ici Si + ∑ijcijSiSj + ∑ijkcijk Si Sj Sk + ⋯, where Si is a local action of the form [Formula: see text]. We further discuss that the topology change of the space naturally leads to the multiverse in which indefinite number of macroscopic universes exist in parallel. In this case, the space–time coordinates x in the multilocal action may sit either in the same universe or in different ones. We then consider the wave function of the entire multiverse, and see how the locality and causality are recovered in such theory. We further discuss the possibility of solving the naturalness problem. In doing so, we need to introduce some assumptions to interpret the multiverse wave function. We consider two different possibilities. One is to simply assume the probabilistic interpretation for the multiverse wave function. The other is to assume infrared cutoff independence of the partition function of the universe. In both cases, we find that the big fix occurs, in which all the coupling constants in the low energy physics are determined by the dynamics of the multiverse. Actually, we find that they are fixed in such a way that the total entropy of the universe at the late stage (in the far future) is maximized. Although the argument here is similar to Coleman's original one given in the late 1980s, our results are based on Lorentzian signature theory and the dynamical mechanism is rather different.

Publisher

World Scientific Pub Co Pte Lt

Subject

Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3