Yang–Mills theory in the SO(2,3)⋆ model of noncommutative gravity

Author:

Dimitrijević-Ćirić Marija1,Gočanin Dragoljub1,Konjik Nikola1,Radovanović Voja1

Affiliation:

1. University of Belgrade, Faculty of Physics, Studentski Trg 12-16, 11000 Belgrade, Serbia

Abstract

According to the standard cosmological model, thermodynamic conditions of the early Universe were such that nuclear matter existed in the state of quark–gluon plasma, rather than hadrons. On the other hand, it is generally believed that quantum gravity effects become ever more stronger as we approach the Big Bang, in particular, we expect that the phenomenon of space–time noncommutativity will be significant. Thus we are led to consider the properties of quarks and gluons in noncommutative space–time. For this, we employ the [Formula: see text] model of noncommutative gravity. As a first step towards the full theoretical treatment of the effects of noncommutativity on quark–gluon plasma, our main goal in this paper is to consistently incorporate Yang–Mills gauge fields in the [Formula: see text] framework and investigate their coupling to gravity that arises due to space–time noncommutativity. We construct an action that is invariant under deformed [Formula: see text] gauge transformations and expand it perturbatively in orders of the canonical deformation parameter [Formula: see text] via Seiberg–Witten map. In particular, we analyze the flat-space–time limit and demonstrate that residual noncommutativity induces various new couplings of quarks and gluons.

Publisher

World Scientific Pub Co Pte Lt

Subject

Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Noncommutative $$SO(2,3)_{\star }$$ gauge theory of gravity;The European Physical Journal Special Topics;2023-05-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3