Deflection of light and shadow cast by a dual-charged stringy black hole

Author:

Kala Shubham1,Saurabh 2,Nandan Hemwati13ORCID,Sharma Prateek1

Affiliation:

1. Department of Physics, Gurukula Kangri Vishwavidyalaya, Haridwar 249 404, Uttarakhand, India

2. Department of Physics, Dyal Singh College, University of Delhi, New Delhi 110003, India

3. Center for Space Research, North-West University, Mahikeng 2745, South Africa

Abstract

Gravitational lensing and black hole shadows are one of the strongest observational evidences to prove the existence of black holes in the universe. The gravitational lensing arises due to the deflection of light by the gravitational field of a gravitating body such as a black hole. Investigation of the shadow cast by a compact object as well as deflection of light around it may provide the useful information about physical nature of the particular compact object and other related aspects. In this paper, we study the deflection of light by a dual-charged stringy black hole space–time derived in dilaton-Maxwell gravity. The variation of deflection angle with the impact parameter for different values of electric and magnetic charges is studied. We also study the shadow of this black hole space–time to obtain the radius of shadow cast by it. We have considered an optically thin emission disk around it and observed that there are not significant changes in the shadow cast by this black hole compared to well-known Schwarzschild black hole space–time in GR.

Funder

Uttarakhand State Council of Science and Technology

Science and Engineering Research Board

Publisher

World Scientific Pub Co Pte Lt

Subject

Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3